Neural machine translation with constraints
نویسندگان
چکیده
منابع مشابه
Neural Machine Translation with Reconstruction
Although end-to-end Neural Machine Translation (NMT) has achieved remarkable progress in the past two years, it suffers from a major drawback: translations generated by NMT systems often lack of adequacy. It has been widely observed that NMT tends to repeatedly translate some source words while mistakenly ignoring other words. To alleviate this problem, we propose a novel encoder-decoder-recons...
متن کاملControlling Target Features in Neural Machine Translation via Prefix Constraints
We propose prefix constraints, a novel method to enforce constraints on target sentences in neural machine translation. It places a sequence of special tokens at the beginning of target sentence (target prefix), while side constraints (Sennrich et al., 2016) places a special token at the end of source sentence (source suffix). Prefix constraints can be predicted from source sentence jointly wit...
متن کاملControlling Politeness in Neural Machine Translation via Side Constraints
Many languages use honorifics to express politeness, social distance, or the relative social status between the speaker and their addressee(s). In machine translation from a language without honorifics such as English, it is difficult to predict the appropriate honorific, but users may want to control the level of politeness in the output. In this paper, we perform a pilot study to control hono...
متن کاملStatistical Machine Translation with Readability Constraints
This paper presents experiments with document-level machine translation with readability constraints. We describe the task of producing simplified translations from a given source with the aim to optimize machine translation for specific target users such as language learners. In our approach, we introduce global features that are known to affect readability into a documentlevel SMT decoding fr...
متن کاملNeural Name Translation Improves Neural Machine Translation
In order to control computational complexity, neural machine translation (NMT) systems convert all rare words outside the vocabulary into a single unk symbol. Previous solution (Luong et al., 2015) resorts to use multiple numbered unks to learn the correspondence between source and target rare words. However, testing words unseen in the training corpus cannot be handled by this method. And it a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Informationis
سال: 2018
ISSN: 1674-7267
DOI: 10.1360/n112017-00222